考博生物化学与分子生物学重点2

来源:51考研网     更新时间:2024-04-20 05:51:36    发布时间: 1484 天前   浏览:861    
最佳答案三、DNA复制的条件:1.底物:以四种脱氧核糖核酸(deoxynucleotide triphosphate)为底物,即dATP,dGTP,dCTP,dTTP。2.模板(te
三、DNA复制的条件:  

1.底物:以四种脱氧核糖核酸(deoxynucleotide triphosphate)为底物,即dATP,dGTP,dCTP,dTTP。  

2.模板(template):以亲代DNA的两股链解开后,分别作为模板进行复制。  

3.引发体(primosome)和RNA引物(primer):引发体由引发前体与引物酶(primase)组装而成。引发前体是由若干蛋白因子聚合而成的复合体;引物酶本质上是一种依赖DNA的RNA聚合酶(DDRP)。  

4.DNA聚合酶(DNA dependent DNA polymerase, DDDP):  

⑴种类和生理功能:在原核生物中,目前发现的DNA聚合酶有三种,分别命名为DNA聚合酶Ⅰ(pol Ⅰ),DNA聚合酶Ⅱ(pol Ⅱ),DNA聚合酶Ⅲ(pol Ⅲ),这三种酶都属于具有多种酶活性的多功能酶。pol Ⅰ为单一肽链的大分子蛋白质,具有5’→3’聚合酶活性、3’→5’外切酶活性和5’→3’外切酶的活性;其功能主要是去除引物、填补缺口以及修复损伤。pol Ⅱ具有5’→3’聚合酶活性和3’→5’外切酶活性,其功能 不明。pol Ⅲ是由十种亚基组成的不对称二聚体,具有5’→3’聚合酶活性和3’→5’外切酶活性,与DNA复制功能有关。  

在真核生物中,目前发现的DNA聚合酶有五种。其中,参与染色体DNA复制的是pol α(延长随从链)和pol δ(延长领头链),参与线粒体DNA复制的是pol γ,polε与DNA损伤修复、校读和填补缺口有关,pol β只在其他聚合酶无活性时才发挥作用。  

⑵DNA复制的保真性:为了保证遗传的稳定,DNA的复制必须具有高保真性。DNA复制时的保真性主要与下列因素有关:①遵守严格的碱基配对规律;②在复制时对碱基的正确选择;③对复制过程中出现的错误及时进行校正。  

5.DNA连接酶(DNA ligase):DNA连接酶可催化两段DNA片段之间磷酸二酯键的形成,而使两段DNA连接起来。该酶催化的条件是:① 需一段DNA片段具有3’-OH,而另一段DNA片段具有5’-Pi基;② 未封闭的缺口位于双链DNA中,即其中有一条链是完整的;③ 需要消耗能量,在原核生物中由NAD+供能,在真核生物中由ATP供能。  

6.单链DNA结合蛋白(single strand binding protein, SSB):又称螺旋反稳蛋白(HDP)。这是一些能够与单链DNA结合的蛋白质因子。其作用为:①稳定单链DNA,便于以其为模板复制子代DNA;② 保护单链DNA,避免核酸酶的降解。  

7.解螺旋酶(unwinding enzyme):又称解链酶或rep蛋白,是用于解开DNA双链的酶蛋白,每解开一对碱基,需消耗两分子ATP。  

8.拓扑异构酶(topoisomerase):拓扑异构酶可将DNA双链中的一条链或两条链切断,松开超螺旋后再将DNA链连接起来,从而避免出现链的缠绕。  

四、DNA生物合成过程:  

1.复制的起始:  

⑴预引发:①解旋解链,形成复制叉:由拓扑异构酶和解链酶作用,使DNA的超螺旋及双螺旋结构解开,形成两条单链DNA。单链DNA结合蛋白(SSB)结合在单链DNA上,形成复制叉。DNA复制时,局部双螺旋解开形成两条单链,这种叉状结构称为复制叉。②引发体组装:由引发前体蛋白因子识别复制起始点,并与引发酶一起组装形成引发体。  

⑵引发:在引发酶的催化下,以DNA链为模板,合成一段短的RNA引物。  

2.复制的延长:  

⑴聚合子代DNA:由DNA聚合酶催化,以亲代DNA链为模板,从5’→3’方向聚合子代DNA链。 

⑵引发体移动:引发体向前移动,解开新的局部双螺旋,形成新的复制叉,随从链重新合成RNA引物,继续进行链的延长。  

3.复制的终止:  

⑴去除引物,填补缺口: RNA引物被水解,缺口由DNA链填补,直到剩下最后一个磷酸酯键的缺口。  

⑵连接冈崎片段:在DNA连接酶的催化下,将冈崎片段连接起来,形成完整的DNA长链。  

⑶真核生物端粒(telomere)的形成:端粒是指真核生物染色体线性DNA分子末端的结构部分,通常膨大成粒状。线性DNA在复制完成后,其末端由于引物RNA的水解而可能出现缩短。故需要在端粒酶(telomerase)的催化下,进行延长反应。端粒酶是一种RNA-蛋白质复合体,它可以其RNA为模板,通过逆转录过程对末端DNA链进行延长。  

五、DNA的损伤:  

由自发的或环境的因素引起DNA一级结构的任何异常的改变称为DNA的损伤。常见的DNA的损伤包括碱基脱落、碱基修饰、交联,链的断裂,重组等。引起DNA损伤的因素有:  

1.自发因素:  

(1)自发脱碱基:由于N-糖苷键的自发断裂,引起嘌呤或嘧啶碱基的脱落。  

(2)自发脱氨基:C自发脱氨基可生成U,A自发脱氨基可生成I。  

(3)复制错配:由于复制时碱基配对错误引起的损伤。  

2.物理因素:由紫外线、电离辐射、X射线等引起的DNA损伤。其中,X射线和电离辐射常常引起DNA链的断裂,而紫外线常常引起嘧啶二聚体的形成,如TT,TC,CC等二聚体。  

3.化学因素:  

(1)脱氨剂:如亚硝酸与亚硝酸盐,可加速C脱氨基生成U,A脱氨基生成I。  

(2)烷基化剂:这是一类带有活性烷基的化合物,可提供甲基或其他烷基,引起碱基或磷酸基的烷基化,甚至可引起邻近碱基的交联。  

(3)DNA加合剂:如苯并芘,在体内代谢后生成四羟苯并芘,与嘌呤共价结合引起损伤。  

(4)碱基类似物:如5-FU,6-MP等,可掺入到DNA分子中引起损伤或突变。  

(5)断链剂:如过氧化物,含巯基化合物等,可引起DNA链的断裂。  

六、DNA突变的类型:  

1.点突变:转换——相同类型碱基的取代。颠换——不同类型碱基的取代。插入——增加一个碱基。缺失——减少一个碱基。  

2.复突变:插入—— 增加一段顺序。缺失—— 减少一段顺序。倒位—— 一段碱基顺序发生颠倒。易位—— 一段碱基顺序的位置发生改变。重组—— 一段碱基顺序与另一段碱基顺序发生交换。 

七、DNA突变的效应:  

1.同义突变:基因突变导致mRNA密码子第三位碱基的改变但不引起密码子意义的改变,其翻译产物中的氨基酸残基顺序不变。  

2.误义突变:基因突变导致mRNA密码子碱基被置换,其意义发生改变,翻译产物中的氨基酸残基顺序发生改变。  

3.无义突变:基因突变导致mRNA密码子碱基被置换而改变成终止暗码子,引起多肽链合成的终止。  

4.移码突变:基因突变导致mRNA密码子碱基被置换,引起突变点之后的氨基酸残基顺序全部发生改变。  

八、DNA损伤的修复:  

DNA损伤的修复方式可分为直接修复和取代修复两大类。直接修复包括光复活、转甲基作用和直接连接作用,均属于无差错修复。取代修复包括切除修复、重组修复和SOS修复,后二者属于有差错倾向修复。  

1.光复活:由光复活酶识别嘧啶二聚体并与之结合形成复合物,在可见光照射下,酶获得能量,将嘧啶二聚体的丁酰环打开,使之完全修复。  

2.转甲基作用:在转甲基酶的催化下,将DNA上的被修饰的甲基去除。此时,转甲基酶自身被甲基化而失活。  

3.直接连接:DNA断裂形成的缺口,可以在DNA连接酶的催化下,直接进行连接而封闭缺口。  

4.切除修复:这种修复机制可适用于多种DNA损伤的修复。该修复机制可以分别由两种不同的酶来发动,一种是核酸内切酶,另一种是DNA糖苷酶。①特异性的核酸内切酶(如原核中的UvrA、UvrB和UvrC)或DNA糖苷酶识别DNA受损伤的部位,并在该部位的5’端作一切口;②由核酸外切酶(或DNA聚合酶Ⅰ)从5’→3’端逐一切除损伤的单链;③在DNA聚合酶的催化下,以互补链为模板,合成新的单链片段以填补缺口;④由DNA连接酶催化连接片段,封闭缺口。  

5.重组修复:①DNA复制时,损伤部位导致子链DNA合成障碍,形成空缺;②此空缺诱导产生重组酶(重组蛋白RecA),该酶与空缺区结合,并催化子链空缺与对侧亲链进行重组交换;③对侧亲链产生的空缺以互补的子链为模板,在DNA聚合酶和连接酶的催化下,重新修复缺口;④亲链上的损伤部位继续保留或以切除修复方式加以修复。  

6.SOS修复:这是一种在DNA分子受到较大范围损伤并且使复制受到抑制时出现的修复机制,以SOS借喻细胞处于危急状态。 

51考研网为您提供专业的 考博生物化学与分子生物学、 博生物化学与分子生物学重点、 相关的考研复试,希望对正在报考在职研究生的学员有所帮助!在职研究生报考、报名,请认准51考研网(https://www.028kaoyan.com/)!

 
本文来源 : 考博生物化学与分子生物学重点2   https://www.028kaoyan.com/j3811.html

相关标签 考博生物化学与分子生物学 博生物化学与分子生物学重点


精华阅读

为您推荐

0相关评论

热门专题

更多

热门问答

更多
  • 报考市场营销考研跨专业考英语的背景分析:近年来,国内市场营销领域的发展日益壮大,市场对于对专业人才的需求也在不断提高。因

  • 摘要:本文将讨论川外翻硕专业考研的好坏,并探讨该专业的发展前景。随着全球交流的增加和中国的对外开放,翻译专业的需求正在增

  • 医学专业哪个考研好考?随着时代的发展和就业形势的变化,越来越多的大学毕业生选择继续深造,而报考研究生成为他们的首选。医学

  • 化工专业考研哪个院校简单?这是每一位准备考研的化工学子都非常关注的问题。本文将基于现有的考研信息,给出对应的排名和建议。

  • 中央音乐学院研究生初试成绩摘要:本篇文章介绍了中央音乐学院研究生初试成绩,并探讨了报考研究生的相关信息。通过三个方面的详